При погружении тела в воду она давит. Техника выравнивания давления в ушах при нырках. Действие жидкости и газа на погруженное в них тело

При погружении тела в воду она давит. Техника выравнивания давления в ушах при нырках. Действие жидкости и газа на погруженное в них тело

Когда-то путешествия в морские глубины были в состоянии совершить лишь литературные герои Жюля Верна, Но вот в 1960 г. уже не фантастический «Наутилус», а совершенно реальный батискаф с двумя учеными на борту (Ж. Пикар и Д. Уолш) достиг дна одной из глубочайших впадин Тихого океана - 10 919 м.

Даже в своих самых смелых мечтах человечество вряд ли могло рассчитывать на такой успех. Отдавая должное дерзости исследователей, нельзя не признать, что такое достижение стало возможным лишь в наши дни - благодаря развитию современной техники.

Глубина ныряния без акваланга ограничена прежде всего запасами имеющегося в организме кислорода (около 2,5 л). Ныряльщику помогает и то, что давление воды, отжимая кровь из конечностей, увеличивает ее насыщение в легких. Так, например, французу Жаку Майолю удалось без акваланга достигнуть глубины 105 м. В воду он погружался по тросу со скоростью 10 м/с и с такой же скоростью затем поднимался вверх. Один из секретов этого феномена заключается в том, что Майоль к моменту установления своего нового мирового рекорда имел 10-летний опыт тренировки по системе йогов. Он научился в совершенстве расслаблять свою мускулатуру и задерживать дыхание до 4 мин, увеличил жизненную емкость легких до 7,4 л. Благодаря столь длительной задержке дыхания организм человека в подводных глубинах как бы уподобляется батискафу, т. е. в результате выключения газообмена для организма не существует проблемы декомпрессионных расстройств, о которых мы еще расскажем читателю. Интересно и то, что до глубины,50 м Майоль погружается с носовым зажимом, который предотвращает попадание воды в носоглотку. При дальнейшем же погружении он снимает носовой зажим, и тогда за счет проникновения воды в носоглотку выравнивается барометрическое давление с наружной и внутренней стороны барабанных перепонок. Тем самым устраняется неприятное ощущение в ушах, связанное с односторонним давлением воды на барабанные перепонки. Глаза Майоля в подводных глубинах защищены контактными линзами.

Среди женщин блестящего успеха достигла в 1986 г. молодая итальянская ныряльщица Анджела Бандини.

Вблизи острова Эльба она погрузилась без акваланга на рекордную для женщин глубину - 52,5 м. Вся операция заняла 2,5 мин. А пятью годами раньше Бандини совершила погружение на 20 м в ледяные воды озера, лежащего на пятикилометровой высоте в Пepy.

Говоря о подводных рекордах, нельзя не вспомнить о героизме многократного рекордсмена мира по подводному плаванию Шаварша Карапетяна. Когда в 1982 г. троллейбус с 20 пассажирами упал и затонул в холодных водах Ереванского водохранилища на глубине 8-9 м, Карапетян нырял на дно подряд в течение более 20 мин и спас жизнь всем пострадавшим. После этого он еще помог вытащить и сам троллейбус. Это был одновременно и гражданский подвиг, и неофициальный спортивный рекорд.

А вот рекорд проникновения аквалангистов в морские глубины составляет 565 м. Он был установлен в 1972 г. двумя французами.

В 1986 г. американец Джей Смит сумел пробыть под водой с аквалангом 124 ч 30 мин, а его соотечественница Фей Генри - более 72 ч. При этом для отдыха и приема пищи они пользовались воздушным колоколом.

В книге М. В. Васильева «Материя» (1977) описывается, как в барокамере четыре добровольца сумели выдержать барометрическое давление, соответствующее глубине 1520 м! Они провели на такой «глубине» 4 ч без всякого вреда для себя, и это при барометрическом давлении, в 152 раза превышающем давление на Земле. Если при обычном атмосферном давлении предложить человеку подышать смесью, содержащей 99,86% гелия и 0,14% кислорода, то он потеряет сознание из-за кислородной недостаточности уже через 1-2 мин. А вот при барометрическом давлении, соответствующем морской глубине 1,5 км, человек сможет свободно дышать этой смесью так же, как в обычных условиях он дышит атмосферным воздухом. И наоборот, дыхание атмосферным воздухом при давлении несколько десятков атмосфер смертельно опасно. В этих условиях организм будет отравлен азотом и... кислородом. Да, да, тем самым кислородом, который в других случаях спасает жизнь Избыточное насыщение кислородом приводит к серьезным, иногда необратимым изменениям в организме.

В нашей стране в 1985 г. четверо добровольцев более месяца жили в барокамере на «глубине» 450 м, А в это же время водолазы Арктики начали выполнять подводные технические работы на морском дне, находясь на глубине 300 м непрерывно в течение 1,5 ч.

При значительно повышенном барометрическом давлении опасным для жизни становится не только кислород атмосферного воздуха, но и содержащийся в нем азот. Этот газ прекрасно растворяется в нервной ткани, вызывая сначала наркотический, а потом и токсический эффект. Азотный наркоз, или «глубинное опьянение», возникает обычно, если человек дышит атмосферным воздухом на глубине 30-100 м. В этом состоянии он теряет контроль над собой. Известны случаи, когда аквалангисты в состоянии «глубинного опьянения» вынимали изо рта загубник со шлангом, через который из баллонов поступал воздух, и погибали. Поэтому при погружении водолаза на большую глубину ему дают газовую смесь, где азот заменен гелием, который значительно хуже растворяется в нервной ткани и в крови.

Замена азота гелием помогает водолазу избежать при подъеме на поверхность воды так называемой кесонной или декомпрессионной болезни. Возникает она в основном из-за того, что при быстром подъеме растворенное в крови, тканевой жидкости и тканях дополнительное количество азота не успевает выделиться из организма. В крови появляются газовые пузырьки, которые могут привести к закупорке жизненно важных сосудов.

Большой вклад в преодоление этого физиологического барьера сделал в 50-е гг. молодой швейцарский ученый Ганс Келлер. Суть его идеи - последовательная смена разных газовых смесей при подъеме. На глубине от 300 до 90 м он предлагает дышать смесью гелия и кислорода, от 90 до 60 м - смесью азота и кислорода, от 60 до 15 м - аргонно-кислородной смесью и с 15 м до поверхности воды - чистым кислородом. Поставив эксперимент на себе, Келлер поднялся с глубины 222 м всего за 53 мин. А ведь до него с глубины 180 м поднимались в течение 12 ч!

Декомпрессионная болезнь может возникнуть не только при подъеме из глубины на поверхность воды, но и при быстром разрежении атмосферы в барокамере. В нашей практике был случай, когда человек дышал через маску кислородом в барокамере при разрежении атмосферы в ней, соответствующем высоте 11000 м, и одновременно выполнял работу на велоэргометре до 1000 кгм/мин. На 26-й мин работы у него появились декомпрессионные боли в левом колене. Не придав им значения, доброволец продолжал работать. Еще через 5 мин газовые пузыри стали закупоривать крупные сосуды легких. В результате, несмотря на дыхание кислородом, возникло ощущение резкого удушья, человек даже потерял сознание. Всего за 3 мин в барокамере было нормализовано барометрическое давление, а потом пострадавший был даже «погружен» в гипербарической камере на «глубину» 15 м, где пробыл 1 ч. Однако самочувствие продолжало ухудшаться, а артериальное давление снизилось до 50/0 мм рт. ст. Только после реанимации и двухнедельного стационарного лечения все последствия декомпрессионной болезни были полностью устранены.

Между прочим, водолазам для уменьшения вероятности появления у них при быстром подъеме на поверхность воды декомпрессионной болезни можно было бы порекомендовать... заняться высотным альпинизмом. В наших наблюдениях за восемью добровольцами, которые выполняли тяжелую физическую работу на велоэргометре при дыхании кислородом в барокамере «на высоте» 11000 м, у всех без исключения на 13-35-й мин работы появлялись декомпрессионные боли в суставах. После подлинного восхождения на Эльбрус у одного из тех же добровольцев декомпрессионные боли появились уже не на 18-й, а на 39-й мин работы. У остальных они не появлялись, несмотря на непрерывную работу в течение 1 ч.

Вообще же, чтобы легче впоследствии преодолевать различного рода барьеры, с которыми человек встречается в воде, подводную тренировку организма целесообразно начинать с младенческого возраста. Новорожденные обладают довольно большой устойчивостью к кислородному голоданию. И в этом нет ничего удивительного, если учесть, что в организме матери плод получает количество кислорода примерно как на высоте Эвереста.

Под нашим наблюдением находилась кошка, которая за двое суток до рождения котят была «поднята» в барокамере на «высоту» 12 000 м и находилась на ней до Полной остановки дыхания (18 мин). Несмотря на столь выраженную гипоксию, у кошки родились шесть полноценных котят. В другом эксперименте установлено, что новорожденный крысенок живет в бескислородной газовой среде (в чистом азоте) 50 мин. Если же искусственно С помощью введения йодацетата затормозить гликолиз, то время его жизни сокращается до 3 мин.

Наблюдения над детьми, проведенные в последние годы, показали, что новорожденные, с которыми проводятся занятия подводным плаванием, значительно быстрее обучаются длительно не дышать под водой, чем более старшие дети и взрослые. Объясняется это тем, что новорожденные обладают большей способностью к бескислородному получению энергии, чем взрослый человек.

Сотрудник Института общей педагогики и психологии И. Б. Чарковский поставил интересный эксперимент на своей 7-месячной недоношенной дочери. Девочка весила всего 1600 г. Чтобы как-то облегчить ее преждевременный переход из условий иммерсии в утробе матери в условия земной гравитации, к которым недоношенному организму приспособиться довольно трудно, Чарковский периодически помещал свою дочь в аквариум и держал ее там по нескольку часов. Девочка, всем на удивление, чувствовала себя в водной стихии как настоящий ихтиандр, свободно плавала и ныряла, а на 4-месяце жизни уже имела нормальный вес.

Австралийские тренеры по плаванию супруги Тиммерманс начали обучать своего сына плаванию уже с конца первой недели после рождения. К шести месяцам ребенок мог держаться на воде до 15-20 мин, и проплывать несколько сот метров.

Сейчас установлено, что у новорожденного значительно сильнее, чем у взрослого, развит рефлекс перекрытия дыхания при погружении в воду. Доказано также, что у грудных детей еще не утеряно умение ориентироваться в водной среде с помощью самого древнего анализатора - вкусового. «По вкусу» ребенок, находящийся под водой, может даже отличать близких ему людей от посторонних.

Советский академик С. И. Вольфкович, будучи уже пожилым человеком, как-то раз во время морского шторма в Гаграх, рискуя жизнью, спас утопающего мужчину. В ответ на благодарность спасенного он ответил: «За что вы меня благодарите? Не мне, не мне вы жизнью обязаны... А тому, что я имел прекрасных родителей, которые научили меня плавать в два года».

В 1982 г. в городе Тутукака (Новая Зеландия) состоялась первая научная конференция, посвященная рождению детей в воде. К настоящему времени в СССР под водой успешно родились уже сотни детей. На январь 1982 г. во Франции таких родов было зарегистрировано 52, а в США - 15. Разумеется, такие роды принимаются опытными врачами. Ванна с водой тщательно продезинфицирована, температура воды равна температуре чрева матери (примерно 38,5°С); в воду добавляется 0,5% соли, т. е. столько же, сколько ее находится в плазме крови. Так что ребенок появляется на свет в знакомой ему водной среде. Кожи ребенка не касается прохладный воздух, что побудило бы его начать дышать. Роженица при этом, как правило, испытывает не очень сильные болевые ощущения, а ребенок не получает родовой травмы.

Интересно, что еще тысячи лет назад в Древнем Египте, когда женщине грозили трудные роды, ее опускали в воду. Может быть, именно такие случаи позволили подметить, что детишки, родившиеся в воде, опережали в физическом и умственном развитии своих сверстников. И тогда тех, кому предстояло стать жрецами, стали производить на свет в водной среде.

Интересная история произошла в нашей стране в июле 1986 г. с супругами Багрянскими из города Владимира. Они отдыхали в Крыму в районе Судака, ожидая пополнения своего семейства. Нормальные роды произошли во время утреннего купания в кристально чистой морской воде. Родившейся в столь экзотических условиях девочке дали и экзотическое имя Эя.

В книге Сондры Рэй «Идеальное рождение» (1985) описан аналогичный случай, который произошел в 1966 г. с Невиллом фон Шлеффенбергом. Его 23-летняя мать плавала в океане, когда у нее начались схватки Ребенок находился после, рождения в воде 4-5 мин.

Есть проекты (и их планируется осуществить в не таком уж отдаленном будущем) строительства подводных городов. А отдельные подводные дома-лаборатории существуют уже сейчас во многих странах мира. Еще в 1969 г. максимальная глубина погружения достигнута американской подводной лабораторией «Аэгир» - 158,5 м. Шестеро акванавтов находились в ней 5 суток.

В атмосфере подводного дома «Аэгир» содержалось всего 1,8% кислорода, но барометрическое давление было значительно выше, чем на земной поверхности.

Если, например, при столь низком содержании кислорода увеличить барометрическое давление до 10-11 атм, то организм не будет ощущать никакой кислородной недостаточности. Именно повышенным барометрическим давлением воздуха подводные дома отличаются от батискафов. Ведь их обитателям - акванавтам - периодически приходится выходить в своих скафандрах в подводный мир, т. е. в условия, где барометрическое давление достигает еще более высоких величин. Если бы в подводных домах барометрическое давление поддерживалось таким же, как на земной поверхности (и в батискафе), то акванавтам пришлось бы слишком долго ожидать в «прихожей» своего жилища после каждой подводной прогулки во избежание декомпрессионной болезни.

На II Международной конференции по изучению деятельности человека под водой французский исследователь Жак Ив Кусто высказал мысль, что подводные города будущего могут быть заселены людьми с искусственными жабрами, извлекающими кислород непосредственно из воды. В соответствии с этой идеей Кусто у человека для противодействия давлению на глубинах следует удалить легкие, а в его кровеносную систему ввести специальный патрон, который химическим путем выделял бы в кровь кислород и удалял бы из нее углекислоту. Далее, по Кусто, борьбе с кессонной болезнью и свободному передвижению по морскому дну будет способствовать заполнение полости организма инертной жидкостью. Все это будет характеризовать новый вид человека - «гомо акватикус». Кусто не исключал, что первый человек этого вида появится к 2000 г.

В принципе гомо акватикус мог бы обойтись и без жабер, но для этого ему придется жить на глубине 500-700 м. В опытах на мышах и собаках доказано, что если на такой глубине заполнить легкие водой, то растворенного в ней кислорода, благодаря его высокому напряжению, будет достаточно для дыхания... водой. Одну собаку удалось снова вернуть к земной жизни.

На наш взгляд, человечество будет осваивать подводные глубины не совсем так, как предполагает Кусто. Это было бы шагом назад. Ведь вторичное возвращение млекопитающих в водную среду, которое привело к появлению современных тюленей, моржей и китов, не связано с появлением у них жабр. Зато эти животные обладают удивительной способностью к экономному расходованию кислорода. Такую же способность путем специальной тренировки вырабатывает у себя и человек. С помощью специальных тренировок и технических приспособлений человек повысит устойчивость своего организма к декомпрессии и охлаждению, связанному с усиленной теплоотдачей в воде, научится нырять и плавать не хуже дельфинов. Но человек никогда не превратится в особый, исключительный вид «гомо акватикус». Он будет развиваться гармонично и чувствовать себя одинаково свободно в водной стихии, на суше и в космосе.

В наше время человек успешно штурмует не только подводные, но и подземные глубины. Прежде всего это относится к исследователям пещер - спелеологам.

Знаменитый французский спелеолог Мишель Сифр еще в 17-летнем возрасте погружался в пещеры глубиной от 320 до 450 м на 81 ч. В 1962 г. он спустился в пропасть Скарассон, расположенную в Альпах на франко-итальянской границе, на глубину 135 м, где на подземном леднике провел в одиночестве, темноте (при свете очень слабой электрической лампочки), при температуре воздуха около 0°С, 100%-ной влажности, в условиях постоянных обвалов целых два месяца. Вот как описывал он свои ощущения в пещере: «Мой слух был постоянно насыщен музыкой или фантастическим грохотом обвалов. Однако мои зрительные восприятия были сильно ограничены темнотой. Довольно скоро глаза мои начали уставать из-за отсутствия естественного света и слабого электрического освещения, и я почувствовал, что теряю представления о цветах. Я стал, например, путать зеленое с синим. Мне было трудно определить расстояния до предметов... Иногда у меня бывали зрительные галлюцинации».

В 1972 г. Сифр прожил в одной пещере Техаса еще дольше - около 7 месяцев. Интересно, что в пещерах его «сутки», измеряемые по промежуткам времени между двумя пробуждениями, составляли 24,5 ч, а температура тела не превышала 36°С.

Подобные аутоэксперименты можно сравнить разве что с антарктическим одиночеством американского адмирала Ричарда Бёрда. В 1934 г. в период полярной ночи он оказался отрезанным на много месяцев от людей, в условиях страшного холода (на антарктической базе близ 80° южной широты). Тем не менее мужество не покинуло Бёрда, и в единоборстве с мраком и холодом он вышел победителем.

К числу серьезных опасностей, подстерегающих человека в пещерах, относятся и подводные паводки. Вот как описывается один из них в книге Норбера Кастере «Моя жизнь под землей». В 1951 г. доктор Мерей оказался вместе с 6 товарищами в одной из пещер Юры, когда внезапно начался подземный паводок. В отряде возникла паника, и все бросились бежать, пытаясь перегнать подъем воды и добраться до выхода из пещеры, но шестерых из семи членов отряда вода настигла, и они утонули.

Доктор Мерей постарался сохранить хладнокровие и решил остаться на месте, там, где свод был повыше и, кроме того, образовывал нечто вроде выемки. Его расчеты могли не оправдаться, поскольку вода дошла ему до плеч и, кроме того, ему все время приходилось бороться с бурным течением. Вода отступила только через 27 часов. Мерей совершенно обессилел от холода и усталости, но продолжал бороться с водой и устоял.

Интересно, что некоторые пещеры успешно могут использоваться с лечебной целью. Например, в Солотвин-ских солерудниках Закарпатья с 1968 г, ведется лечение ночевками в пещерах больных бронхиальной астмой. Медицинская статистика свидетельствует, что таким способом от бронхиальной астмы избавляются 84% взрослых и 96% детей. Объясняется же лечебный эффект этих пещер чистотой воздуха и его явно выраженной отрицательной ионизацией.

Самая глубокая из изученных на сегодняшний день пещер - пещера Жан-Бернар во Франции - 1445 м. Предполагают, что пещера Снежная на Кавказе имеет глубину 1600 м. Если же говорить о шахтах, то самая глубокая из них - более 3 км от поверхности прорыта в Южной Африке. На такой большой глубине люди добывают золото.



Основные риски, которые могут Вас приследовать во время погружений:

Влияние на организм парциального давления газов

В зависимости от величины частичного давления, газы, которые входят в состав воздуха для дыхания, влияют на организм человека. Азот оказывает токсическое воздействие, когда частичное давление составляет 5,5 кг/см2. На глубине 60 метров у дайвера появляется возбуждение, снижаются трудоспособность и внимательность, затрудняется ориентировка, иногда бывает головокружение. При погружении еще глубже (80-100 метров) у дайвера начинают развиваться зрительные и слуховые галлюцинации.

После трех суток дыхания кислородом при частичном давлении 1 кг/см2 в легких развиваются воспалительные явления. А при давлении более 3 кг/см2 через полчаса возникают судороги и человек теряет сознание. При повышении частичного давления углекислого газа более 0,03 кг/см2 могут наступить тяжелые расстройства.

Кессонная болезнь и декомпрессия

Использование акваланга таит в себе опасности. При погружении на большую глубину можно, вдохнув азот под большим давлением, совершить самоубийство в состоянии невменяемости. Причина – нарушение работы мозговых центров. Еще один риск – попадание азота в кровь и распространения его по различным органам. Причиной паралича или даже внезапной смерти может стать закупорка артерии пузырьками азота (газовая эбмболия), но обычно растворившийся в тканях азот начинает выделяться в суставах, мышцах и различных органах человеческого тела, причиняя дикую боль.

Дайвера, поднимающегося с глубины слишком быстро, поджидает серьезная опасность. Если акваланг будет поврежден, дайвер при экстренном подъеме чисто инстинктивно задержит дыхание. При этом воздух, оставшийся в легких, по мере падения давления воды расширится и повредит легкие. На поверхности у дайвера может начаться обильное кровотечение изо рта и носа или конвульсия. Дайвер, нырявший без акваланга не пострадает от баротравмы легких, так как воздух в его легких находится под обычным атмосферным давлением.

Если дайвер из-за чего-то (например, порча дыхательного аппарата) поднялся с глубины очень быстро и заработал кессонную болезнь, на него нужно надеть акваланг и спустить на достаточную глубину для декомпрессии. В иных случаях (например, когда если пострадавший потерял сознание) дайвера нужно как можно быстрее поместить в декомпрессионную камеру. Она состоит из большого цилиндра с несколькими манометрами, телефонного аппарата и другого оборудования. Большие модели камер могут вместить несколько человек, стоящих во весь рост.

Физические опасности на глубинах до 30 метров:

    разрыв барабанных перепонок,
    повреждение кровеносных сосудов после моментального разрежения воздуха в костюме или маске,
    кровоизлияние в каком-либо внутреннем органе,
    переохлаждение.

Какие проблемы могут возникать с ушами при погружении?
Баротравма уха встречается очень часто. Во время отпускного сезона практически в каждой группе новичков - дайверов найдется хотя бы один, жалующийся на боль в ушах при погружении или на проблемы с «продуванием». Баротравма является самой распространенным медицинским осложнением дайвинга, оставляя далеко позади (к счастью!) кессонную болезнь и газовую эмболию.

Анатомия: зачем надо продуваться?
Если заглянуть в ухо специальным прибором - отоскопом (вспомните: доктор ЛОР - с зеркалом на лбу вставляет в ухо металлическую воронку) мы увидим блестящую мембрану - барабанную перепонку, герметично отделяющую наружное ухо от среднего. Среднее ухо, увидеть которое можно только в учебнике анатомии, представляет собой закрытую со всех сторон полость, сообщающуюся с внешней средой посредством т.н. евстахиевой трубы. Внутри этой полости расположены специальные нервные клетки, воспринимающие колебания барабанной перепонки (т.е. звуки) и изменения положения тела (орган равновесия). Евстахиева труба - это действительно труба длиной 4-5 см. Она начинается в среднем ухе, как уже было сказано, и заканчивается в носоглотке. Часть трубы окружена костью, а часть - мягкими тканями. Выходное отверстие в носоглотке прикрыто складками слизистой оболочки.
При зевании или сглатывании, мягкая часть трубы (та, которая в носоглотке) подтягивается вверх, складки расправляются - отверстие трубы открывается. У некоторых людей диаметр трубы большой и отверстие открыто практически всегда. Такие счастливчики проблем с продувкой не знают.
При погружении столб воды давит на барабанную перепонку, и, если изнутри, со стороны среднего уха, давление не уравнять, барабанная перепонка будет испытывать нагрузку снаружи, тогда появится боль. Если спуск продолжается, несмотря на боль, перепонка может не выдержать и разорваться - произойдет перфорация.

От чего зависит проходимость труб?
Как уже было сказано, диаметр трубы - прежде всего, дело врожденное. Любой отек резко уменьшает ее диаметр и, соответственно, проходимость. Самые распространенные причины отека - инфекция (чаще всего обычные вирусные простуды и синуситы) и аллергия, в т.ч. носовые полипы. В той или иной степени труба хронически отечна у курильщиков (делайте выводы!). Одна из редких причин - гипотиреоз (пониженная функция щитовидной железы). Искривленная носовая перегородка может также доставить немало неприятностей.
Многие дайверы отмечают, что продуваться легче в вертикальном положении, головой вверх. До конца этот феномен не понятен, частично его можно объяснить тем, что в вертикальном положении мягкие ткани и складки слизистой меньше сдавливают и закрывают просвет трубы. Именно поэтому новичкам и дайверам с плохой проходимостью евстахиевых труб рекомендуется продуваться в строго вертикальном положении головой вверх.

Как проверить проходимость труб?
Перед погружением не вредно проверить проходимость труб (новичкам это надо сделать обязательно!). Для этого выполняется широко известный "прием Вальсавы". На всякий случай надо зажать нос пальцами через специальные углубления в маске, закрыть рот и медленно выдохнуть, не раздувая щек. На самом деле выдоха не получится, т. к. и нос и рот закрыты. Вместо выдоха мы добьемся повышения давления в носоглотке, евстахиевой трубе и в среднем ухе, т.е. «продуемся ». При правильном выполнении приема Вальсавы вы должны почувствовать щелчки в ушах. Дуть резко не рекомендуется, т. к. можно вызвать разрыв круглого окна (foramen rotundum) в среднем ухе. Тем же осложнением грозит запоздалая продувка на глубине.

Закон Архимеда – закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.

История вопроса

«Эврика!» («Нашел!») – именно этот возглас, согласно легенде, издал древнегреческий ученый и философ Архимед, открыв принцип вытеснения. Легенда гласит, что сиракузский царь Герон II попросил мыслителя определить, из чистого ли золота сделана его корона, не причиняя вреда самому царскому венцу. Взвесить корону Архимеду труда не составило, но этого было мало – нужно было определить объем короны, чтобы рассчитать плотность металла, из которого она отлита, и определить, чистое ли это золото. Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну – и вдруг заметил, что уровень воды в ванне поднялся. И тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему. Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый побежал докладывать о своей победе в царский дворец, даже не потрудившись одеться.

Однако, что правда – то правда: именно Архимед открыл принцип плавучести. Если твердое тело погрузить в жидкость, оно вытеснит объем жидкости, равный объему погруженной в жидкость части тела. Давление, которое ранее действовало на вытесненную жидкость, теперь будет действовать на твердое тело, вытеснившее ее. И, если действующая вертикально вверх выталкивающая сила окажется больше силы тяжести, тянущей тело вертикально вниз, тело будет всплывать; в противном случае оно пойдет ко дну (утонет). Говоря современным языком, тело плавает, если его средняя плотность меньше плотности жидкости, в которую оно погружено.

Закон Архимеда и молекулярно-кинетическая теория

В покоящейся жидкости давление производится посредством ударов движущихся молекул. Когда некий объем жидкости вымещается твердым телом, направленный вверх импульс ударов молекул будет приходиться не на вытесненные телом молекулы жидкости, а на само тело, чем и объясняется давление, оказываемое на него снизу и выталкивающее его в направлении поверхности жидкости. Если же тело погружено в жидкость полностью, выталкивающая сила будет по-прежнему действовать на него, поскольку давление нарастает с увеличением глубины, и нижняя часть тела подвергается большему давлению, чем верхняя, откуда и возникает выталкивающая сила. Таково объяснение выталкивающей силы на молекулярном уровне.

Такая картина выталкивания объясняет, почему судно, сделанное из стали, которая значительно плотнее воды, остается на плаву. Дело в том, что объем вытесненной судном воды равен объему погруженной в воду стали плюс объему воздуха, содержащегося внутри корпуса судна ниже ватерлинии. Если усреднить плотность оболочки корпуса и воздуха внутри нее, получится, что плотность судна (как физического тела) меньше плотности воды, поэтому выталкивающая сила, действующая на него в результате направленных вверх импульсов удара молекул воды, оказывается выше гравитационной силы притяжения Земли, тянущей судно ко дну, – и корабль плывет.

Формулировка и пояснения

Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается поднять на суше. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменился.

Существование гидростатического давления приводит к тому, что на любое тело, находящееся в жидкости или газе, действует выталкивающая сила. Впервые значение этой силы в жидкостях определил на опыте Архимед. Закон Архимеда формулируется так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу того количества жидкости или газа, которое вытеснено погруженной частью тела.

Формула

Сила Архимеда, действующая на погруженное в жидкость тело, может быть рассчитана по формуле: F А = ρ ж gV пт,

где ρж – плотность жидкости,

g – ускорение свободного падения,

Vпт – объем погруженной в жидкость части тела.

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести Fт и архимедовой силы FA, которые действуют на это тело. Возможны следующие три случая:

1) Fт > FA – тело тонет;

2) Fт = FA – тело плавает в жидкости или газе;

3) Fт < FA – тело всплывает до тех пор, пока не начнет плавать.

Еще до рождения человек 9 месяцев живет в водной среде. Младенцы учатся плавать быстрее, чем говорить и чувствуют себя в воде увереннее, чем на твердой поверхности.

Проходят годы и, повзрослев, люди ищут возможности вернуться к воде. Океан зовет нас, и мы не в силах преодолеть этот инстинкт. Мы не чужаки в водном мире. Мы просто возвращаемся на время домой. Дайвинг – это ключ к единению с океаном, занятие влюбленных в море, уверенных в себе и своих друзьях людей.

Спасибо за Ваше внимание к дайвингу!

  • Дайвинг

    С чего начать? Нужно ли специальное обучение для занятий дайвингом?

  • Физиология дайвинга

    Что происходит с организмом человека под водой?

  • Возможные опасности

    Что нужно знать дайверу для комфорт-
    ных погружений?

Физиология дайвинга

Что происходит с организмом человека под водой.

У нас для Вас есть хорошая новость. 70% организма человека никак не реагируют на погружения под воду. Почему?... Да просто потому, что организм человека сам на 70% состоит из воды. Поэтому тело человека не испытывает дискомфорта от погружений. Особенно от любительских погружений до глубины 40 метров. Правда остаются еще 30%, которым все-таки придется немножко помочь.

В первую очередь давайте посмотрим, что происходит с легкими человека во время погружения на глубину, скажем, 30 метров. См. рисунок:

На поверхности на наши легкие действует давление равное одной атмосфере. Каждые десять метров, которые мы будем погружаться во время дайвинга, к этой одной атмосфере будет прибавляться дополнительная атмосфера. Таким образом, на глубине 10 метров на легкие действует уже две атмосферы, на глубине 20 метров – три атмосферы, а на глубине 30 метров – 4 атмосферы.

Если не добавлять в легкие воздух, как видно из рисунка, их объем на глубине 30 метров уменьшится в 4 раза и составит всего 25% от исходного объема. Но у нас снова есть хорошая новость. Если Вы не будете задерживать под водой дыхание (а во время дайвинга такой необходимости нет), объем Ваших легких не изменится. Вы постоянно будете компенсировать внешнее давление новыми порциями вдыхаемого воздуха.

Легкие – это очень хрупкий и важный орган человека. Дайверу любителю играть с объемом легких не стоит – это удел опытных подводных охотников и фридайверов. Поэтому отсюда следует один из основных постулатов дайвинга – никогда не задерживать дыхание во время погружений . Если при погружении задержка дыхания не несет существенной опасности, то при всплытии такая опасность есть и она очень серьезная.

Представьте себе, что Вы задержали дыхание на глубине 30 метров и начали всплытие. Объем Ваших легких был нормальным, ведь Вы дышали и постоянно подавали в легкие воздух во время дайвинга. Но вот Вы поднимаетесь наверх, крепко задержав дыхание. Внешнее давление уменьшается в четыре раза. Согласно всем законам физики объем легких пропорционально должен увеличиться в 4 раза, но легкие человека на это не способны. Итог - легкие не выдерживают нагрузки и получают серьезную баротравму изнутри.

Поэтому ни при каких обстоятельствах не задерживайте дыхание во время дайвинга. Постоянное и равномерное дыхание дайвера обеспечивает легким своевременный приток необходимого для поддержания их объема воздуха, и своевременный отток лишнего воздуха, в момент всплытия на поверхность. Простым размеренным дыханием под водой Вы обеспечите легким комфорт во время всего погружения, независимо от глубины, на которую Вы опускаетесь.

Уши, гайморовы и околоносовые пазухи.

Кроме легких у человека также есть еще небольшие полости воздуха, которые могут подвергаться воздействию перепада давлений во время дайвинга. Это – среднее и внутреннее ухо, а также гайморовы и околоносовые пазухи. Давление в этих полостях выравнивается достаточно просто, см. статью как правильно продувать уши . При продувании ушей давление одновременно выравнивается во всех пазухах, при условии отсутствия простудных или хронических лор-заболеваний.

Важно понимать, что при простудных заболеваниях (насморк, ОРЗ, грипп и т.п.) зачастую выровнять давление в ушах и пазухах невозможно. Воспаленная слизистая и расширенные сосуды перекрывают заполненные воздухом полости, и они не могут свободно сообщаться друг с другом. Следует воздержаться от дайвинга до полного выздоровления, потому что погружения на глубину более шести метров без выравнивания давления могут повлечь дискомфорт и даже баротравму уха.

В остальном ничего особенного с изменением глубины дайвера под водой не ждет. Самые серьезные изменения происходят на первых десяти метрах. Если удалось выровнять давление в ушах в начале дайвинга, то и в дальнейшем все будет хорошо. На больших глубинах, правда, следует учитывать парциальное давление кислорода и азота в газовых смесях, но начинающему дайверу эта информация пока ни к чему. Особенностям воздействия азота и кислорода на организм человека с увеличением глубины обучают на специальных курсах.

В процессе эволюционного развития человеческий организм совершенствовался и приспособлялся к существованию в воздушной среде. Нормальная жизнедеятельность всех органов и тканей человека зависит от газового состава воздуха, атмосферного давления, температуры, влажности и других факторов внешней среды. Значительные изменения этих факторов могут вызывать существенные нарушения в организме. Окружающий нас атмосферный воздух является дыхательной газовой смесью имеющей следующий постоянный сос­тав: азота – около 78% (по объему), кислорода – около 21%, угле­кислого газа – около 0,03%. Кроме этих газов, в состав атмосфе­рного воздуха входит целый ряд других газов (аргон, гелий, неон, криптон, ксенон и др.), но практического влияния на организм водолазов и подводников эти газы не оказывают, т. к. находятся в воздухе в ничтожно малых количествах. В атмосферном воздухе присутствуют также водяные пары (до 4% по объему). Высокая влажность воздуха может вызывать у человека нарушение нормальных процессов выделения и поглощения тепла. Вся масса атмосферного воздуха своим весом давит на по­верхность земли и находящиеся на ней предметы и человека с силой, уравновешиваемой столбом ртути в 760 мм на уровне мо­ря, на широте 45° при 0° С. Эта величина, принятая за едини­цу давления, называется физической атмосферой и обозначается атм (атм = 760 мм рт. ст. или 10,33 м вод.ст., что соответст­вует 1,033 кгс/см). Атмосферное (барометрическое) давление, равное 1 атм, на-зывается нормальным. В технике и водолазном деле за единицу давления принимают давление в 1 кгс/см. Эта единица назы­вается технической атмосферой и обозначается ат (1 ат = 1кгс/см2, что соответствует 10 м вод.ст. или 735,6 мм рт.ст., или 0,968 атм). Поверхность тела человека составляет 1,5…2 м 2. Следова­тельно, сила, с которой атмосферный воздух давит на тело чело­века, составляет 15…20 тс. Однако человек этого не ощущает, т. к. его тело состоит из 65% жидких и 35% твердых веществ, практически не сжимаемых. Кроме того, газ, растворяясь в организме, а также сжимаясь в воздухоносных полостях, создает противодавление, рав­ное окружа-ющему давлению. Если выкачивать воздух из воздухоносных полостей, человек сразу ощутит всю тяжесть столба воздуха. Тело водолаза или подводника, находящегося в воде, испы­тывает дополнительное давление от веса столба воды. На каждые 10 м погружения в воду тело испытывает допол­нительное давление в 1 ат. Оно называется избыточным и обоз­начается ати. Сумма избыточного и атмосферного давлений назы­вается абсолютным давлением и обозначается ата. Например, на глубине 20 м на водолаза будет действовать абсолютное дав­ление, равное 3 ата (2 ати за счет давления столба воды и 1 ат за счет давления воздуха). В водолазной практике давление определяют водолазными манометрами, которые всегда показывают величину избыточного давления. Однако необходимо принять во внимание величину абсолютного давления, т. к. абсолютное давление является опре­деляющим при возникновении тех или иных нарушений в нашем организме. Для того чтобы водолаз или подводник не ощущал повышен­ного давления при спусках под воду, необходимо для дыхания применять воздух, сжатый до окружающего давления, который, проникая во все полости и ткани организма, будет уравновеши­вать внешнее давление. Равенство внешнего и внутреннего дав­лений – основное условие спусков под воду. Его необходимо строго соблюдать. Газы характеризуются следующими величинами: массой, за­нимаемым объемом, давлением и температурой. Все эти величины взаимосвязаны и взаимозависимы: при изменении одной из них меняются все остальные. Обратно пропорциональная зависимость между объемом газа и давлением при неизмен­ной температуре устанавливается законом Бойля-Мариотта: P1V1 = P2V2, где P1 и P2 – начальное и конечное давление газа, ат; V1 и V2 – начальный и конечный объемы газа, л (или м3). Из этого закона следует, что при увеличении давления объем будет уменьшаться. Пользуясь этим выражением, можно определить запас возду­ха, находящегося в баллонах дыхательного аппарата. Например, в двух баллонах, емкостью по 1 л каждый, под давлением 200 ат находится

приведенного к нормальному давлению воздуха. При одном и том же давлении повышение температуры газа приводит к увеличению его объема: «Объем данной массы газа при постоянном давлении прямо пропорционален температуре» (закон Гей-Люссака). Такая же зависимость существует между давлением газа и его температурой при постоянном объеме (закон Шарля).Эти соотношения можно выразить формулами:

где: V1 и V2 – начальный и конечный объем газов при постоянном давлении, л; t1 и t2 – начальная и конечная температура газа, °С; P1 и P2 – начальное и конечное давление газов при постоянном объеме, ат. Из данных формул видно, что в случае повышения или понижения окружающей температуры объем газа будет меняться, а при неизменном объеме будет повышаться или понижаться давление газа в сосуде. Поправку на температуру, т. е. повышение или понижение давления в баллонах в зависимости от температуры, водолазы учитывают при подводных погружениях. ПРИМЕР. При температуре 27°С давление газа в баллоне равно 200 ат. Каким будет давление газа при погружении под воду, если температура воды 10°С? По формуле находим:

Температурный фактор имеет существенное значение при хранении газа в баллонах: баллоны с газом под давлением нельзя хранить вблизи отопительных приборов и под воздействием солнечных лучей, так как давление может повыситься до величин, превышающих допустимые. Если между газами нет химического взаимодействия, то они относятся друг к другу индифферентно и смешиваются во всех пропорциях. Каждый из них распространяется по объему так, как если бы других газов совершенно не было. Этим пользуются в водолазном деле при приготовлении дыхательных газовых смесей, применяемых при глубоководных спусках. Влияние на организм оказывают не столько процентное содер-жание газа в газовой смеси, сколько его парциальное давление, т. е. давление, создаваемое каждым газом в отдельности. При изменении окружающего давления процентное соотношение газов в составе газовой смеси не меняется, а изменяется их парциальное давление. Парциальное давление газа зависит от общего (абсолютного) давления смеси газов и процентного содержания газа по объему в смеси. Оно определяется по формуле:

где а – процентное содержание газа в газовой смеси; Р – общее давление газовой смеси; ρ – парциальное давление газа. Парциальное давление газа может быть выражено в мм рт.ст., мм вод.ст., в ата или в кПа. Парциальное давление газов атмосферного воздуха равно:



около 8 мм рт.ст. приходится на долю инертных газов. Зная парциальное давление газа и его процентное содержание, всегда можно найти общее давление газовой смеси и, наоборот, зная давление и процентное содержание газа в смеси, можно рассчитать парциальное давление.

Водная среда и ее свойства.

Влияние водной среды на организм Организм человека приспособлен к существованию в воздуш­ной среде. Пребывание человека под водой необычно, т. к. вода по своим физическим свойствам значительно отличается от воздуха: в ней нет газообразного кислорода, она значительно тяжелее и плотнее воздуха, имеет большую теплоемкость и высо­кую теплопроводность. Эти особенности создают специфические условия при погружениях под воду. Вода в 775 раз плотнее, а следовательно, и тяжелее воз­духа. Если на поверхности Земли человек испытывает давление, равное 1 кгс/см 2, то на глубине всего лишь 10 м давление удво­ится и будет равным 2 кгс/cм 2. Тело, погруженное в воду, теряет в весе столько, сколько весит вытесненный им объем воды (закон Архимеда). Вес тела человека обычно незначительно больше веса объе­ма вытесняемой им воды. Человек весом 80 кг вытесняет при погружении 78…79 л воды и, таким образом, в воде тело чело­века обладает отрицательной плавучестью, равной 1…1,5 кгс. Как правило, человек, не умеющий плавать, не удерживается на поверхности воды. Объем водолаза, одетого в водолазное снаряжение, увеличивается на 30…60 л (в зависимости от типа водолазного сна­ряжения), и следовательно, водолаз будет иметь большую поло­жительную плавучесть. Для компенсации (погашения) этой пла­вучести используют свинцовые или чугунные грузы (2 груза по 16…18 кг каждый). При этом отрицательная плавучесть водолаза, одетого в снаряжение, в воде колеблется от 5 до 10 кгс. Под­водник, одетый в изолирующее снаряжение, при выходе из апл не имеет грузов. Положительная плавучесть его составляет 7…8 кгс. Это обеспечивает лучшие условия для выхода из затонувшей подводной лодки как по специальному концу от пл до поверхности, так и при свободном всплытии, а также обеспечивает возможность удерживаться на плаву после выхода на поверхность до подхода спасательных средств. Кроме силы тяжести и силы плавучести на водолаза действуют гидродинамические силы, обусловленные течением воды, и различные механические силы. Однако основными силами, определяющими положение водолаза, находящегося в воде, являются сила тяжести и сила плавучести. Они определяют способность водолаза сохранять в воде необходимое положение и легко возвращаться к нему при наклоне в любую сторону. При работе под водой водолазу приходится принимать самые разнообразные положения: вертикальное, на коленях, на боку, на спине или животе. Во всех случаях водолаз старается придать своему телу наиболее устойчивое и удобное для выполнения работы положение. Способность удерживаться в воде в удобном положении называется остойчивостью водолаза. Чтобы достичь остойчивого положения, нужно грузы и аппарат для дыхания расположить на теле так, чтобы центр тяжести был ниже центра плавучести на одной вертикальной линии (см. рис. 6).

Рис. 6.

Положение водолаза под водой: А – неостойчивое; Б – остойчивое; ЦП – центр плавучести – точка приложения силы плавучести; ЦТ – центр тяжести – точка приложения силы тяжести

Если грузы расположить иначе, водолазу в воде будет тру­дно удерживать равновесие и передвигаться по грунту. В случае, когда под водолазным костюмом воздух скопится около нижней части туловища или ног, водолаза может перевер­нуть вверх ногами и выбросить на поверхность. Поэтому перед погружением под воду или перед выходом из апл в специальных костюмах необходимо тщательно удалить воздух из-под костюма через специальные клапаны. Для достижения положительной расчетной плавучести под­водника и во избежание переворачивания в спасательный гидро­комбинезон подводника вставляются металлические стельки. Это обеспечивает вертикальное положение подводника при всплытии. Под водой подводник испытывает разность давлений на ниж­ние и верхние участки тела. Эта разность тем больше, чем вы­ше рост водолаза. Нижние конечности обжимаются сильнее и, следовательно, хуже снабжаются кровью и больше подвергаются переохлаждению. Отток крови от верхних участков тела умень­шается, кровеносные сосуды переполняются кровью, что приво­дит в некоторых случаях к носовым кровотечениям. Теплоемкость воды в четыре раза больше теплоемкости воздуха, а теплопроводность в 25 раз больше. В холодной воде это ведет к переохлаждению водолаза. Для предупреждения тяжелых последствий время пребывания под водой человека без одежды ограничивается (см. табл. 15).

Таблица 15

Температура воды,

Время пребывания,мин

Пребывание в воде недопустимо

Если время пребывания в воде превышает приведенные в табл. 15 сроки, это влечет за собой появление «гусиной кожи», мышечной дрожи, синюшности, мышечных болей, затем нас­тупает окоченение мышц, потеря голоса, появляется икота, и человек теряет сознание. При температуре воды ниже 18°С погружение без гидрокомбинезона недопустимо. При температуре воды 12.°С следует одевать шерстяное водолазное белье и гидрокомбинезон. Осве­щенность предметов под водой зависит от толщины слоя воды, от высоты стояния солнца и угла падения солнечных лучей, а также от рассеивания света растворенными в воде веществами и взвешенными частицами, т. е. от прозрачности воды. Прозрачность воды определяется с помощью стандартного диска диаметром 30 см, который погружается до пределов его видимости. О прозрачности воды морей и океанов можно судить по дан­ным табл. 16.

Таблица 16

Острота зрения в воде понижается в 100…200 раз. Если между глазом и водой имеется воздушная прослойка, то преломляющая способность глаза нарушается незначительно и зрение особенно не страдает, но предметы кажутся приподня­тыми и расположенными ближе. Для улучшения видимости под водой в любом типе водолаз­ного снаряжения предусматривают воздушную прослойку между глазом и водой. Для улучшения видимости под водой в темное время суток и на глубине применяют подводные электрические светильники. Звук в воде распространяется со скоростью 1400…1500 м/сек, в воздухе – со скоростью 340 м/сек. Орган, воспринима­ющий звуковые колебания, у человека расположен во внутреннем ухе, куда звуковая волна может попасть двумя путями: путем воздушной проводимости через наружный слуховой проход и сис­тему среднего уха и путем вибрации костей черепа. На поверх­ности преобладает воздушная проводимость, под водой – костная. Поэтому звук под водой ослабляется: удар ключом по баллону слышен на расстоянии 100…150 м. Разница во времени между приходом звука в правое и левое ухо очень незначительна, и под водой трудно определить направление звука (ошибка может достигать 180°).

Биологическое действие газов на организм человека при повышенном давлении

Установлено, что биологическое действие газов на орга­низм человека зависит от величин их парциальных давлений. Изменения их парциальных давлений имеют существенное значение для жизнедеятельности. Рассмотрим влияние этих газов на организм человека. Азот – биологически индифферентный газ. В обычных условиях азот – нейтральный для организма газ. Попадая в легкие чело­века при дыхании, он не вступает в химические соединения с кровью и выделяется из организма через легкие. В нормальных условиях в организме человека растворен 1 л азота. При повышении давления растет парциальное давле­ние азота и в организме растворяется его дополнительное ве­совое количество. На глубине 50…60 м азот вызывает у человека нарушение внимания и ослабление памяти, при этом нарушается точная ко­ординация движений, теряется ориентировка в пространстве. При дальнейшем нарастании парциального давления, т. е. при погружении на большие глубины, появляется веселость, зрительные и слуховые галлюцинации. При погружении на еще большие глубины от азота у челове­ка наступает глубокий сон – наркоз. Наибольшей глубины погружения (123 м) на сжатом воздухе, в котором 78% азота, удалось достичь в 1936 году советскому водолазу Медведеву. Француз Фредерик Дюма в 1948 г. погружался на глубину 93 м, а его соотечественник Морис Фарг достиг глубины 120 м, где он сделал отметку. Продолжая погружаться дальше, Фарг погиб от азотного наркоза. Погружаться на глубины более 50…60 м, пользуясь для ды­хания сжатым воздухом, опасно. Правилами водолазной службы спуск под воду на глубины свыше 60 м в аппаратах, в которых для дыхания применяется сжатый воздух, запрещается. Для пог­ружения на большие глубины используются искусственно приготов­ленные газовые смеси. В этих смесях азот частично или полно­стью заменяется гелием, наркотическое действие которого про­является на глубинах свыше 300 м. Кислород – биологически активный газ. В организме человека кислород вступает в соединение с особым веществом гемоглобином, находящимся внутри эритроцитов. С током крови кисло­род переносится эритроцитами ко всем тканям тела, где происходит обмен между кровью и тканями: кровь отдает тканям кислород, идущий на окисление питательных веществ, а отнимает от тканей образовавшийся в них углекислый газ. В атмосферном воздухе содержится примерно 20,9% кислорода. Жизнь без кислорода невозможна. Внезапный перерыв в сна­бжении организма человека кислородом или даже уменьшение пос­тупления кислорода к тканям могут привести к тяжелому состоя­нию, называемому кислородным голоданием. Уменьшение процентного содержания кислорода во вдыхае­мом атмосферном воздухе на 1…2% человек практически не ощу­щает. Если содержание кислорода в воздухе уменьшается до 18%, наступает кислородное голодание. Чистый кислород оказывает на организм человека отравляю-щее действие. Чем больше глубина, тем сильнее оно выражено. Кислород – сильный окислитель. При дыхании чистым кисло­родом дыхательные пути разрушаются. Затем присоединяется ин­фекция и наступает воспаление легких. Это так называемая ле­гочная форма кислородного отравления. Установлено, что при дыхании чистым кислородом при нор­мальном давлении через 2…3 суток у человека возникает воспа­ление легких. При повышении давления растет парциальное дав­ление кислорода и соответственно увеличивается токсическое, т. е. отравляющее, действие кислорода, а время наступления отравления сокращается. Если человек будет дышать кислородом, парциальное дав­ление которого превышает 3 ат, возникает судорожная форма кислородного отравления. Воспаление легких при этом не успевает развиться, т. к. кислород, быстро растворяясь в мозго­вой ткани, вызывает бурные окислительно-восстановитель­ные процессы, что влечет за собой полное нарушение функции коры головного мозга и сопровождается общими судорогами. По своему внешнему проявлению кислородные судороги напоминают эпи­лептический приступ. При продолжающемся токсическом действии кислорода дыхание прекращается, сердце останавливается и наступает смерть. По этой причине в кисло­родных аппаратах, в соответствии с правилами водолазной службы, на чистом кис­лороде можно погружаться лишь на глубины до 20 м и находиться под водой не более 20 мин. В аварийных отсеках пл при создании противодавления повышается и парциальное давление кислорода, что существен­но влияет на работоспособность и продолжительность жизни лич­ного состава. Углекислый газ – также биологически активный газ. В атмосферном воздухе углекислого газа находится немного – всего 0,03%. В отсеках пл количество углекислого газа может доходить до 1%, 1,5% и даже больше. Углекислый газ при концентрации его во вдыхаемом возду­хе до 1% существенного влияния на организм человека не ока­зывает. Повышение концентрации углекислого газа в отсечном воз­духе до 3% и более приводит к острому отравлению. Поэтому на подводной лодке необходимо правильно исполь­зовать средства восстановления воздуха в отсеке, не допус­кать опасных концентраций углекислого газа. В аварийных отсеках пл при поступлении забортной воды и сжатии отсечного воздуха парциальное давление углекислого газа сильно повышается и, следовательно, усиливается его ток­сическое действие. Чтобы избежать вредного влияния на организм высоких парциальных давлений азота, кислорода и углекислого газа, перед повышением давления в отсеке пл необходимо включаться в изо­лирующие дыхательные аппараты. Газы, в отличие от жидкостей, обладают малой теплопро­водностью. Они являются хорошими тепловыми изоляторами. Теп­лопроводность газов возрастает с увеличением их температуры, но она не зависит ни от давления, ни от плотности газов. Теплопроводность различных газов сильно отличается друг от друга. Если теплопроводность воздуха принять за еди­ницу, то теплопроводность гелия в 6,18 раза больше, т. е. при дыхании газовыми смесями, содержащими гелий, организм быстрее будет охлаждаться окружающей средой.

Насыщение и рассыщение организма человека индифферентными газами. Действие повышенного давления на организм.

Известно, что всякий газ, приведенный в соприкосновение с жидкостью, будет растворяться в ней. При данной температуре растворимость газов прямо пропорциональна давлению. Растворе­ние газа в жидкости будет происходить до тех пор, пока давле­ние газа в жидкости не сравняется с давлением его над жидкостью. Если в жидкости растворяется одновременно несколько га­зов, то растворение каждого из них происходит независимо друг от друга. В этом случае каждый газ растворяется пропор­ционально величине его парциального давления в данной газо­вой смеси. Растворимость газов зависит также от химической природы газа, его температуры и от самого растворителя. Нап­ример, в масле и в воде газы растворяются по-разному. Однако объем растворенного газа не зависит от давления, т. к. по закону Бойля-Мариотта объем газа обратно пропор­ционален его давлению. Отсюда следует, что объем газа, раст­воренного в крови, будет одинаков, независимо от того, дышит человек воздухом под давлением в 1 атм или 3 ата. Весовое же количество растворенного газа будет изменяться. При погружении водолаза на глубину 20 м он будет испы­тывать давление в 3 ата. Объем растворенного в организме газа сразу уменьшится. Этот дефицит газа будет пополняться из крови, а в крови – из легких. Подобный переход газа продолжается до тех пор, пока не установится начальный объем насы­щения. В этот момент общий вес растворенного газа будет в три раза больше, чем при дыхании на поверхности. При нормальном атмосферном давлении кислород, растворен-ный в крови, быстро усваивается тканями, углекислого газа растворяется мало. В тканях растворяется большое количество азота. В организме человека, вес которого 70 кг, постоянно растворено около 1 л азота. При повышении давления (например, при спуске под воду на значительную глубину) в тканях организма растворяется дополнительное количество азота. В случае относительно короткого пребывания под давлением ткани не успевают полностью насытиться азотом. В покое насыщение идет медленно, при физической работе – быстрее. Насыщение зависит также от температуры воды и физических свойств организма водолаза. При длительном пребывании под повышенным давлением, особенно при высоких давлениях (более 5…6 ат), в организме растворяется значительное количество азота. Этот процесс называется насыщением. Если окружающее давление постепенно уменьшать, то растворенный газ будет выделяться из организма, т. е. произойдет рассыщение организма от избыточного растворенного газа. Газ при этом удаляется за счет диффузии через легкие с выдыхаемым воздухом. В легких парциальное давление кислорода высокое (105 мм рт.ст.), а в венозной крови, поступающей в легкие, – низ­кое (37 мм рт.ст.). Кислород свободно переходит из альвеол в кровь вследствие разности парциальных давлений. Зато парциальное давле­ние углекислого газа в крови выше (48 мм рт. ст.), чем в аль­веолярном воздухе, где оно составляет 41,8 мм рт. ст. Углекислый газ вследствие этого покидает кровь и переходит в альве­олы. Из альвеол он легко удаляется во время выхода. Проника­ющая способность углекислого газа очень высокая. Она в 10 раз больше, чем проникающая способность кислорода. В тканях организма, вследствие разности парциальных да­влений, кислород из крови поступает к клеткам, а кровь насы­щается углекислым газом – конечным продуктом обмена веществ. Находясь на поверхности земли, человек испытывает практически одинаковое давление воздуха на все участки тела. При погружении в воду давление воды на участки тела будет различ­ным. Для человека среднего роста (170 см) разность давлений столба воды на верхние и нижние участки тела составит около 130 мм рт.ст. Отток крови из участков, лежащих выше сердца, будет затруднен; от нижних конечностей кровь будет оттекать легко, т. к. давление столба воды будет выжимать кровь по направ­лению к сердцу. Нагрузка на сердце увеличивается, поэтому погружения под воду разрешаются только людям со здоровым сердцем. Не весь воздух, попадающий в дыхательные пути, участву­ет в процессе газообмена между легкими и кровью. В дыхатель­ных путях воздух очищается, нагревается и увлажняется, но непосредственного газообмена в дыхательных путях не происхо­дит. Это так называемый физиологический объем вредного пространства. Для каждого человека он постоянен и равен 140 см 3. Если спуски под воду производятся в снаряжении, то к физиологическому вредному пространству добавляется аппаратный объем вредного пространства. В современных аппаратах он сни­жен до минимума. Дыхательные пути человека создают определенное сопротивление току воздуха. У здорового человека эта величина столь мала, что практически не учитывается. С ростом давления увеличивается плотность воздуха и соп­ротивление дыханию. Например, на глубине 20 м сопротивление дыханию увели­чивается вдвое. У нетренированных людей длительное пребывание под водой вызывает утомление грудных мышц. Сопротивление дыханию создает и сам дыхательный аппа­рат. Нормально отрегулированный дыхательный аппарат имеет сопротивление 20…50 мм вод. ст. При повышенном давлении физиологические функции изменяются: дыхание становится реже. Это объясняется тем, что парциальное давление кислорода высокое, поэтому необходимости в усиленной его транспортировке нет. В организме человека имеется ряд полостей (система сред­него уха и околоносовые пазухи), которые содержат воздух и соединяются с атмосферой с помощью каналов. Если эти каналы проходимы, то при повышении окружающего давления в этих воздухоносных полостях также создается давление, равное окружаю­щему давлению. Водолаз или подводник при этом никаких непри­ятных ощущений не испытывает и могут легко, в течение 2…3 мин, осуществить переход от атмосферного давления до давле­ния 7…8 ат. Если каналы, соединяющие воздухоносные полости с атмос­ферой, непроходимы, давления в воздухоносных полостях не соз­дается. Наступает одностороннее смещение тканей, вследствие чего появляются сильные боли в ушах и надбровных дугах. Аналогичную картину можно наблюдать, если полость боль­ного зуба неправильно запломбирована: под пломбой остается полость, не соединяющаяся с атмосферой. При повышении давле­ния в этом случае также происходит одностороннее смещение тка­ней и появляется сильная зубная боль. При остром насморке каналы, соединяющие воздухоносные полости с атмосферой, воспаляются и становятся труднопроходи­мыми. Погружаться под воду при остром насморке не следует. После перенесенных гриппа, ангины, катара верхних ды­хательных путей наблюдается частичная непроходимость каналов, соединяющих воздухоносные полости с атмосферой. При погружении под воду у лиц, имеющих частичную непро­ходимость каналов, может появиться «надавливание» на ухо или околоносовые пазухи. Устраняется это выравниванием давления в воздухоносных полостях с окружающим давлением. Для этого необходимо глотать слюну или воздух, смещать вбок выдвинутую вперед нижнюю че­люсть, энергично делать выдох при закрытом рте и зажатом носе. Если это не помогает, нужно подняться на 1,5…2 м и снова по­пытаться выравнить давление. Если это не удается, следует выйти на поверхность. Пребывание в атмосфере повышенного давления сопровожда­ется ослаблением слуха. Хорошо известно также, что голос под повышенным давлением резко изменяется. Он приобретает носовой оттенок, т. к. изменяется давление в воздухоносных полостях носоглотки. Это следует учитывать при отдаче приказаний в аварийных отсеках пл под повышенным давлением и особенно при включении на дыхание в изолирующие дыхательные аппараты. Команды нужно произносить медленно, с паузами между сло­вами, четко и внятно.


Самое обсуждаемое
Победы и поражения Виктора Тихонова Победы и поражения Виктора Тихонова
Мария кучина (цска): турнир «русская зима» – всегда красочный праздник! Мария кучина (цска): турнир «русская зима» – всегда красочный праздник!
Правила охоты в России снова меняют: Новый проект приказа о внесении изменений в Правила охоты I Правила охоты в России снова меняют: Новый проект приказа о внесении изменений в Правила охоты I


top